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Abstract
Jellium model structures composed of regular lattices of equal point charges
immersed in a neutralizing uniform background are considered. The symmetric
description eliminating the effect of potentials without transverse structural
modulation is extended to the events specified by alternating distances between
point-charge planes. Based on modulated potentials typical of plane-wise lattice
summation, the energy of interaction between two semi-infinite hemi-crystals
divided by a plane is obtained for cubic and hexagonal crystals, where all the
characteristic orientations of the cleavage plane are taken into account. We
found that simple cubic and hexagonal lattices, as well as cubic and hexagonal
diamond structures, turn out to be unstable for certain cleavage planes. The
most favourable cleavage planes for the bcc, fcc and hcp structures are also
emphasized.

1. Introduction

The approach based on jellium models was first put forward in connection with the problem
of lattice summation of Coulomb series [1–3]. However, it also appears to be fruitful upon
describing different electron properties of metals [4–7]. Its simplicity accounts for many efforts
to improve such a treatment so as to make it more realistic for certain applications [8, 9].
The interest in jellium models remains upon describing different bulk properties [10–14],
including the interaction with impurities [15, 16] that is, for instance, inherent in the modern
hydrogen storage problem [17–19]. Such models are used upon examining peculiar features of
finite slabs [20], as well as for describing quantum size effects [21–26]. Different surface
properties [10, 13, 27–38] and the interaction between surfaces [39, 40] are successfully
investigated within the framework of jellium models as well.

The problems of stability within the jellium model treatment are of special interest.
The classical topic is associated with the uniform electron gas immersed in a neutralizing
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uniform background, where the instability with respect to the Wigner crystallization is
predicted [41–44]. It is significant in this respect that the negative bulk Coulomb energy
actually warrants the stability of a system. In particular, different aspects of lattice stability
as a bulk property have been studied, evaluating the predominant Coulomb contribution in a
jellium model [45, 46].

However, it turns out that there is one more source of instability driven by the application
of a jellium model to crystals. This fact was noticed by Lang and Kohn [5] in the particular
case of a simple cubic lattice with the (1, 0, 0) plane surface. In this case the electrostatic
contribution to the surface energy appears to be negative. Obtained within a jellium model, this
result implies the repulsion between two semi-infinite parts of a crystal and so one more sort of
bulk instability. On the other hand, it is evident that this effect is artificial. It seems important
to understand whether there are other structures with such a property.

In the present paper we consider four cubic and three hexagonal point structures immersed
in a neutralizing uniform background. The most symmetric orientations of the cleavage plane
are examined. The plane-wise summation is adopted to obtain the analytic results for the
interaction energy mentioned above. We show that the unstable simple cubic lattice is not
unique.

2. Potential contributions of a single neutral symmetric layer

Interested in a certain energy effect of Coulomb nature in jellium models, we begin with the
characteristic potentials generated by plane structural fragments treated as unit ones. In the
simplest case such a unit contains one plane lattice composed of equal point charges q , with
the elementary vectors a1 = a1e1 and a2 = a2e2 of lattice translations. Here e1 and e2 are
the respective unit vectors with the product (e1e2) = cos θ . The crystal is then assumed to be
constituted of such parallel planes separated by a distance c in the normal direction, providing
that this set of planes is immersed in a neutralizing uniformly charged background. Thus, the
area of a unit mesh per charge in a plane is equal to s = a1a2 sin θ , the unit cell volume v = sc
and the charge density of a background ρ = −q/v.

Following Sholl [47], it is reasonable to single out an electrically neutral layer fragment
associated with a sole plane in a symmetric manner, as shown at the top in figure 1(a). The
translational symmetry in a plane, along with the uniform background effect, implies that the
potential of the layer in question can be decomposed into two parts, uniform and modulated in
the plane directions, respectively.

The uniform part φ0(z) can be easily obtained as a solution of the corresponding boundary-
value problem, that is defined by the following relations:

d2φ0(z)

dz2
= −4πρ,

dφ0(z)

dz

∣
∣
∣
z=0±

= ∓2πq

s
, φ0

(

± c

2

)

= 0, (1)

because a variable z normal to the plane of the layer is essential alone. The solution φ0(z)
can be readily obtained from this. Making use of the mean potential value φ̄0 = πqc/(6s)
appropriate to the case, the modified potential φmod

0 (z) = φ0(z) − φ̄0, that is reconciled with
the Ewald approach [47], takes the form

φmod
0 (z) =

⎧

⎪⎪⎨

⎪⎪⎩

2πqc

s

[(
1

2
− |z|

c

)2

− 1

12

]

at |z| � c
2 ,

−πqc

6s
at |z| > c

2 .

(2)

It is important that φmod
0 (z) is a constant at |z| > c/2 and so it does not affect the energy of any

electrically neutral object situated in this region. Furthermore, the potential shift described by
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Figure 1. (a) Planes of point charges shown as heavy lines form a regular structure at the top, where
a single symmetric layer is exhibited by hatching. The potential U generated by that layer and
measured in units of πqc/(2s) is shown at the bottom, where the horizontal line indicates the shift
of the origin. (b) In a similar structure, but with c1 = 2c2, symmetric layers indicated by hatching
have their boundaries either within wide interplanar distances (case W) or within narrow ones (case
N). Their potentials U shown beneath are measured in units of πqc2

2/v. After respective shifts, the
origin is common to both the cases.

φ̄0 and shown at the bottom in figure 1(a) is essential to the general potential treatment [48],
but is also immaterial to the energy problem outside that layer.

Another situation we are interested in is associated with two alternating interplanar
distances c1 and c2. The decomposition of the structure into symmetric layers containing two
planes of point charges is possible in two ways leading either to case W or to case N, as shown
at the top in figure 1(b). Note that now c1+c2 = c and a background is described by the density
ρ̃ = −2q/v, with v = sc. In case W the boundary-value problem is specified by functions
φ01(z) at |z| � c2/2 and φ02(z) at c2/2 < |z| � c/2 which are defined by

d2φ0 j(z)

dz2
= −4πρ̃,

dφ01(z)

dz

∣
∣
∣
z=0

= 0, φ01

(∣
∣
∣
c2

2

∣
∣
∣

)

= φ02

(∣
∣
∣
c2

2

∣
∣
∣

)

,

[
dφ01(z)

dz
− dφ02(z)

dz

]

z=±c2/2

= ±4πq

s
, φ02

(∣
∣
∣
c

2

∣
∣
∣

)

= 0.

(3)

The solution is as follows:

φmod
0W (z) = πq

v
×

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

4z2 + 3c2
1 − c2

3

)

at 0 � |z| � c2
2 ,

[

(c − 2|z|)2 + 3c2
2 − c2

3

]

at c2
2 � |z| � c

2 ,

3c2
2 − c2

3
at |z| > c

2 ,

(4)

where the mean potential φ̄0W = πq(c2 − 3c2
2)/(3v) is subtracted as well.

3



J. Phys.: Condens. Matter 19 (2007) 086216 E V Kholopov and V V Kalashnikova

The result for case N in figure 1(b) follows from (4) after interchanging c1 ↔ c2 and is of
the form

φmod
0N (z) = πq

v
×

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(

4z2 + 3c2
2 − c2

3

)

at 0 � |z| � c1
2 ,

[

(c − 2|z|)2 + 3c2
1 − c2

3

]

at c1
2 � |z| � c

2 ,

3c2
1 − c2

3
at |z| > c

2 .

(5)

Note that results (4) and (5) are described by the same origin and so may be thought of as a
continuation of each other, as depicted at the bottom in figure 1(b). Constant potential values
at |z| > c/2 still imply that they do not contribute to the energy of any neutral object beyond
either of such complex layers.

As far as the modulated part of the potential is concerned, every plane of point charges
can be considered as an independent potential source. According to the translational symmetry
along the plane in question, the general form of the potential generated by a single plane can
be written down as

φ(r‖, z) =
∑′

h

fh(z) exp
[

2π i(hr‖)
]

, (6)

where h is the two-dimensional reciprocal lattice vector, the prime on the summation sign
implies missing the term with h = 0, because this term corresponds to φ0(z) discussed above,
r‖ is the two-dimensional vector along the plane specified by a1 and a2, and the expansion
coefficients fh(z) depend on the coordinate z normal to the source plane of charges, with its
origin lying on that plane, and can be obtained directly as Fourier transforms of the lattice series
of pair-wise Coulomb potentials [47, 49].

However, it seems to be easier to determine them as solutions of the boundary-value
problem, in accord with the original approach of Madelung [50]. We start from the two-
dimensional charge distribution σ(r‖) in the source plane, subtracting the part uniform in r‖.
Like (6), this quantity can be expanded in a series

σ(r‖) =
∑′

h

gh exp
[

2π i(hr‖)
]

, (7)

where the prime on the summation sign means that the h = 0 term is omitted, the structure
factors gh are defined as

gh = 1

s

∫

mesh
σ(r‖) exp

[−2π i(hr‖)
]

dr‖, (8)

with the integral over r‖ carried out over a unit mesh parallelogram. In the particular case of
point charges q located at b j within a unit mesh, relation (8) is simplified and its substitution
into (7) gives rise to

σ(r‖) = q

s

∑′

h, j

exp
[

2π ih(r‖ − b j )
]

. (9)

Function (6) is then determined by Laplace’s equation with the boundary condition
dφ(r‖, z)

dz

∣
∣
∣
z=0±

= ∓2πσ(r‖). (10)

On integrating the equation for every particular fh(z) in an independent manner and inserting
those results into (6), the constants of integration are determined upon substituting the series
obtained into (10) and comparing with the contribution of (9) there. As a result, we derive

φ(r‖, z) = q

s

∑′

h, j

exp(−2π |h| |z|)
|h| cos

[

2πh(r‖ − b j )
]

, (11)
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where the exponential function of a fluctuating part is replaced by the cosine function due to the
inversion symmetry of summation over h. Formula (11) is just the result of Sholl [47]. If we
concentrate on the rectangular lattices, then for the general reciprocal lattice vector we obtain

h = h1l1 + h2l2, |h| =
(

l2
1

a2
1

+ l2
2

a2
2

)1/2

, (12)

where l1 and l2 are integers and hα = eα/aα. In this case relation (11) can be rewritten as

φ(r‖, z) = q

a1a2

∞
∑′

l1,l2=−∞

exp(−2π |h| |z|)
|h|

∑

j

cos

[
2πl1

a1
(r1 − b j1)

]

cos

[
2πl2

a2
(r2 − b j2)

]

,

(13)

where the prime on the summation sign denotes missing the term with l1 = l2 = 0 and rα

and b jα are the components of r‖ and b j along eα , respectively. It is worth noting that every
cosine function in formula (11) is now represented as a product of two cosine functions [51].
The latter result can be easily obtained by direct manipulations with the series at hand, bearing
in mind that all the factors, except cosine functions, depend on l2

1 and l2
2 and so do not change

upon changing the sign of either l1 or l2.

3. Coulomb interaction between two semi-infinite parts of a jellium-model structure

According to the conventional standpoint [3, 5], the chief electrostatic contribution to the
surface energy can be evaluated as an effect of Coulomb interaction between two semi-
infinite hemi-crystals divided by a plane boundary suggested in the bulk of a perfect crystal
structure. This is the reason that the interaction energy of this kind is the subject of our further
investigation.

The general scheme of calculation of this energy is shown in figure 2. As mentioned
above, the potential φ0(z) created by every symmetric layer is a constant outside that layer
and so does not contribute to the interaction energy characteristic of any electrically neutral
portion separated by vertical lines on the right-hand side in figure 2. One more peculiarity
of the jellium model is associated with the fact that the interaction of a background with the
modulated part of the potential also vanishes because this contribution actually corresponds to
averaging the modulated potential over a unit mesh [47]. It is interesting to note that the latter
property is quite general and so independent of the mode of lattice summation [51]. Thus, the
only nonzero contribution to the energy of interest is described by the effect of the modulated
potential from one half of a crystal on point charges belonging to the other half, as shown in
figure 2.

The structural characteristics typical of the task are naturally as follows: (i) the period c
along the z axis normal to the cleavage plane in question, (ii) the number k of plane lattices
of point charges per period, of which distribution along c is described by the parameters pi

with 1 � i � k, and (iii) the orthogonal lattice parameters a1 and a2 of a plane lattice and
the coordinates b j,1 and b j,2 of basis vectors b j attributed to every plane lattice of summation,
with a common origin on lattice 1, for definiteness. It is also convenient to represent |z| in
formula (13) as |z| ⇒ z + z ′, in accord with figure 2. The plane-wise summation scheme can
then be described in the general form

z′ = c(m ′ + p1), z = c(m − p1) lattice 1,

. . . . . . . . . . . . . . . . .

z′ = c(m ′ + pk), z = c(m − pk) lattice k,

(14)
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Figure 2. The scheme of calculating the energy of Coulomb interaction between two semi-infinite
jellium-model hemi-crystals divided by a plane boundary. Thin vertical lines single out symmetric
neutral layers, each of which contains point charges on its middle plane. In this figure two types
of lattices are considered as an example, so that open circles mark point charge lattices shifted
anyhow from those denoted by filled circles. The heavy vertical lines on the hatched domain exhibit
such parallel planes, with the period c, summation over which along z ′ results in the potential as
a function of z beyond the hatched domain. The energy per unit area arises as an effect of that
potential on charges within the column of a unit area cross-section depicted by dashed lines on the
right-hand side.

where m ′ � 0 and m � 1 are integer parameters of summation along the z axis. The
aforementioned parameters for all the cases under consideration are compiled in the appendix,
for convenience.

As a first example, we consider a simple cubic (sc) structure with the lattice
spacing d and focus our attention on the cleavage plane orientation (1, 0, 0) driven by
relations (A.1), (A.12), (A.16) and (A.17) in the appendix. Based on (13), utilizing z ′ from (14)
and summing over m ′, we obtain

U(r‖, z) = q

d

∞
∑′

l1,l2=−∞

exp
(

− 2π L1z
d

)

cos
(

2π l1r1
d

)

cos
(

2π l2r2
d

)

L1(1 − F1)
, (15)

where

L1 = (l2
1 + l2

2

)−1/2
, F1 = exp

(−2π L1
)

. (16)

Note that throughout this paper every quantity, like L1, under the summation sign is supposed
to be a function of l1 and l2, but its arguments l1 and l2 will be omitted for brevity.

Figure 2 shows that the energy of interest arises if we multiply (15) by q at r1 = b11,
r2 = b12, substitute z from (14) and carry out the summation over m. As a result, the energy
per point charge is

E sc
(1,0,0) = q2

d

∞
∑′

l1,l2=−∞
M−(L1, F1), (17)

where we introduce the characteristic functions of the general form

M±(L, F) = F

L(1 ± F)2
(18)

and relations (16) are employed as well.
The case of the sc lattice with the (1, 1, 0) cleavage plane is more complicated and is

described by (A.1), (A.2), (A.13), (A.18) and (A.19) in the appendix. A novel feature is
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associated with some modification of the final summation over l1 and l2. Indeed, taking into
account the charge positions given by (A.1) and (A.2) upon summing over both m ′ and m, we
derive

E sc
(1,1,0) = q2

d

∞
∑′

l1,l2=−∞

F2

L2(1 − F2
2 )2

[

2F2 + (1 + F2
2 ) cos(πl2)

]

, (19)

where

L2 = (2l2
1 + l2

2

)−1/2
, F2 = exp

(−π L2
)

. (20)

Keeping in mind that cos(πl2) is equal to either +1 or −1 for l2 even and odd, respectively, the
expression in the square brackets on the right-hand side of (19) can be cast in the form

2F2 + (1 + F2
2 ) cos(πl2) =

{
(1 + F2)

2 l2 even,
−(1 − F2)

2 l2 odd.
(21)

On substituting (21) into (19), we finally obtain

E sc
(1,1,0) = q2

d

⎡

⎢
⎣

∞
∑′

l1,l2=−∞
{l2 even}

M−(L2, F2) −
∞∑

l1,l2=−∞
{l2 odd}

M+(L2, F2)

⎤

⎥
⎦ . (22)

4. General consideration of cubic structures

Apart from the sc structure, here we consider the body-centred (bcc), face-centred (fcc) and
diamond (cd) cubic structures. The procedure of calculation is similar to that described
in the previous section. The (1, 0, 0) cleavage plane for bcc and fcc lattices is described
by (A.1), (A.4), (A.13), (A.16) and (A.17) in the appendix. Note that the summation scheme
for the (1, 1, 0) cleavage plane in the case of fcc described by (A.1), (A.4), (A.18) and (A.19)
turns out to be the same. As a result, we obtain

Ebcc,fcc
(1,0,0)

E fcc
(1,1,0)

}

= Dq2

d

⎡

⎢
⎣

∞
∑′

l1,l2=−∞
{l1+l2 even}

M−(Lc, Fc) −
∞∑

l1,l2=−∞
{l1+l2 odd}

M+(Lc, Fc)

⎤

⎥
⎦ , (23)

where

D = 1, Lc = L1, Fc = exp(−π L1) (1, 0, 0) bcc,

D = √
2, Lc = L1, Fc = exp(−π L1

√
2) (1, 0, 0) fcc,

D = √
2, Lc = L2, Fc = exp(−π L2/

√
2) (1, 1, 0) fcc,

(24)

L1 and L2 are defined by (16) and (20), respectively.
Based on (A.1)–(A.4) and (A.15)–(A.17), for the (1, 0, 0) cleavage plane in the cd case we

easily derive

Ecd
(1,0,0) = Dq2

d

⎡

⎢
⎣

∞
∑′

l1,l2=−∞
{l1,l2 even}

M−(L1, F̂1) − 2
∞∑

l1,l2=−∞
{l1+l2 odd}

M+(L1, F̃1) −
∞∑

l1,l2=−∞
{l1,l2 odd}

M+(L1, F̂1)

⎤

⎥
⎦ ,

(25)

where D and F̃1 are determined by (24) in the (1, 0, 0) fcc case and F̂1 = (F̃1)
1/2.
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The (1, 1, 0) cleavage plane in the bcc case is described by (A.5), (A.8), (A.13), (A.18)
and (A.19) in the appendix. Utilizing these results in the summation scheme (14), the energy
per point charge takes the form

Ebcc
(1,1,0) = 2q2

d

⎡

⎢
⎣

∞
∑′

l1,l2=−∞
{l1,l2 even}

M−(L2, F2) −
∞∑

l1,l2=−∞
{l1,l2 odd}

M+(L2, F2)

⎤

⎥
⎦ , (26)

where L2 and F2 are still specified by (20). Likewise, the calculation for the (1, 1, 0) cleavage
plane in the cd structure is based on (A.1), (A.4), (A.9), (A.13), (A.18) and (A.19) in the
appendix and yields

Ecd
(1,1,0) = q2

√
2

d

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

l1,l2=−∞
{l1,l2 odd}

[

M−(L2, Fc) − √
2 M+(L2, F2)

]

+ √
2

∞
∑′

l1,l2=−∞
{l1,l2 even}

M−(L2, F2) −
∞
∑′

l1,l2=−∞
{l1 even}
{l2 odd}

M+(L2, Fc)

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

, (27)

making use of (20) and with Fc defined by (24) in the (1, 1, 0) fcc case.
In the case of the (1, 1, 1)-cleavage plane orientation, every individual plane lattice is

hexagonal and can be represented as a combination of two simple rectangular lattices [52]. As
a result, the overall structure is described by (A.5)–(A.7) in the appendix. The corresponding
structural parameters are given by (A.20)–(A.22). So, the summation in the sc, bcc and fcc
cases is described by (A.14) and (A.23).

The situation is somewhat distinct if we deal with the cd structure, as shown in figure 3.
The alternation in the value of interplanar spacing implies that there are two types of symmetric
layers of charges responsible for the uniform potential contribution beyond these layers, as
depicted in figure 1(b). In this event c1 = c/4 and c2 = c/12. As a result, the corresponding
two types of position of the cleavage plane appear as well, though every individual plane lattice
of point charges described by (A.5)–(A.7) still contributes to the modulated potential of interest
in an independent manner. It is worth noting that the (1, 1, 1)N case described by (A.24) gives
rise to a formula that is slightly more complicated than those for the three other structures at
hand. Hence, all these cases can be written in a combined manner as

E sc,bcc,fcc
(1,1,1)

Ecd
(1,1,1)N

}

= q2 B

d

∞
∑′

l1,l2=−∞
{l1+l2 even}

F̃

L3[1 − F3
3 ]2

[

3F2
3 + (1 + 2F3 + 2F3

3 + F4
3

)

cos
2πl2

3

]

, (28)

where

L3 = (3l2
1 + l2

2)
1/2, F3 = exp(−π AL3/3), (29)

B = √
2, A = √

2 sc,

B = √
2, A = 1/

√
2 bcc,

B = 2
√

2, A = 2
√

2 fcc, dc,

(30)

F̃ =
{

F3 sc, bcc, fcc,

F̃31(1 + F̃32)
2 cd,

(31)

F̃31 = exp(−√
2π L3/6) and F̃32 = F̃3

31.
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Figure 3. Diamond structures in terms of hexagonal planes shown by heavy horizontal lines,
where the notations on the left and on the right correspond to the cubic and hexagonal diamond,
respectively. Plane 4 arises from plane 1 by its parallel shift and the same connection is between
planes 2 and 5 and between planes 3 and 6. The cleavage planes shown by thin lines and designated
properly may be situated midway either within a wider interplanar distance (case W) or within a
narrower one (case N).

On the other hand, case W presented in figure 3 is described by (A.25), so that the
expression for the corresponding energy takes the form

Ecd
(1,1,1)W = 2

√
2 q2

d

∞
∑′

l1,l2=−∞
{l1+l2 even}

F̃32

L3[1 − F3
3 ]2

{
(

1 + F̃3
32

)2

+ 2F̃2
32

(

1 + F̃32
)2 + F̃31

(

1 + F̃32
)

×
[

2
(

1 + F3
)(

1 + F̃3
32

)+ F̃31
(

1 + F2
3

)(

1 + F̃32
)]

cos
2πl2

3

}

. (32)

5. Energy peculiarities of hexagonal structures

Here we also consider three basic hexagonal structures whose peculiar structural features are
exhibited in figure 4. A simple hexagonal (sh) structure shown in figure 4(a) will be discussed in
the particular case of |d4| = d so that the nearest-neighbour distances in hexagonal planes and
between such planes coincide. On the other hand, interested in hexagonal close-packed (hcp)
and hexagonal diamond (hd) structures, we restrict ourselves to the ideal ratio |d4|/d = √

8/3.
Although the latter case is not energetically favourable, at least for hcp structures, the actual
deviation is negligible [45, 47]. On the other hand, this case admits a direct comparison with
results for cubic structures with close structural motifs pointed out in figure 3.

We begin with the (0, 0, 0, 1) orientation of the cleavage plane. According to the
foregoing choice of structural parameters, the sh structure is described by (A.5), (A.12), (A.32)
and (A.33), leading to

E sh
(0,0,0,1) = 2q2

d

∞
∑′

l1,l2=−∞
{l1+l2 even}

M−(L3, F3h), (33)

where L3 is defined by (29) and F3h = exp
(−2π L3/

√
3
)

.
The hcp case is determined by (A.5), (A.6), (A.13), (A.32) and (A.34). The hd case follows

from this set, where (A.13) and (A.34) must be replaced either by (A.35) or by (A.36) in cases

9
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Figure 4. (a) Hexagonal plane of a simple hexagonal (sh) structure, where d1, d2 and d3 are typical
vectors of elementary in-plane translations, with |d1| = |d2| = |d3| = d and with the fourth
translation vector d4 normal to the plane of the figure. In terms of these vectors the hexagonal plane
is specified as a (0, 0, 0, 1) one, whereas two other basic planes of interest are denoted as (1, 0, 0, 0)

and (0, 1̄, 1, 0) and shown by thin lines, respectively. (b) Apart from plane lattice 1 shown by filled
circles, the hcp structure contains lattice 2 shown by open circles and shifted by d4/2 from the plane
of lattice 1. So, there are two types of symmetric cleavage planes (0, 1̄, 1, 0)W and (0, 1̄, 1, 0)N
midway in wider and narrower interplanar intervals, respectively.

N and W, respectively. As a result, we obtain

Ehcp
(0,0,0,1)

Ehd
(0,0,0,1)N

}

= 2q2

d

∞
∑′

l1,l2=−∞
{l1+l2 even}

F̃
[

2F3 + (1 + F2
3

)

cos
(

2πl2/3
)]

L3(1 − F2
3 )2

, (34)

where

F̃ =
{

F3 hcp,

F̃33(1 + F̃3
33)

2 hd,
(35)

F3 = exp(−2
√

2π L3) and F̃4
33 = F3. Likewise,

Ehd
(0,0,0,1)W = 2q2

d

∞
∑′

l1,l2=−∞
{l1+l2 even}

F̃3
33

L3(1 − F2
3 )2

[
(

1 + F2
3

)(

1 + F̃2
33

)

+ 4F̃5
33 + 2F̃33

(

1 + F̃3
33

)(

1 + F̃5
33

)

cos
2πl2

3

]

. (36)

The sh structure is described by (A.1), (A.2), (A.13), (A.26) and (A.27) for the (1, 0, 0, 0)

cleavage plane, but (A.26) and (A.27) must be replaced by (A.28) and (A.29) for the (0, 1̄, 1, 0)

plane. Then the corresponding energy values are as follows:

E sh
(1,0,0,0)

(0,1̄,1,0)

= q2

d

⎡

⎢
⎣

∞
∑′

l1,l2=−∞
{l2 even}

M−(Lh, Fh) −
∞∑

l1,l2=−∞
{l2 odd}

M+(Lh, Fh)

⎤

⎥
⎦ , (37)

where

Lh = L3, Fh = exp
(−π L3/

√
3
)

(1, 0, 0, 0),

Lh = L1, Fh = exp
(−π

√
3L1
)

(0, 1̄, 1, 0),
(38)

with L1 and L3 defined by (16) and (29), respectively.

10
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The (1, 0, 0, 0) case for the hcp and hd structures is described by (A.11), (A.13), (A.26)
and (A.27). The resulting energies can also be written in a combined manner:

Ehcp,hd
(1,0,0,0) = q2

√
3

d

⎡

⎢
⎢
⎢
⎢
⎣

∞
∑′

l1,l2=−∞
{l1,l2 even}

GK +M−(L4, F4) +
∞∑

l1,l2=−∞
{l1 even}
{l2 odd}

GK −M−(L4, F4)

−
∞∑

l1,l2=−∞
{l1 odd}
{l2 even}

GK +M+(L4, F4) −
∞∑

l1,l2=−∞
{l1,l2 odd}

GK −M+(L4, F4)

⎤

⎥
⎥
⎥
⎥
⎦

, (39)

where

L4 = (8l2
1 + 9l2

2

)1/2
, F4 = exp

[−π L4/(2
√

6)
]

, (40)

K ± = 1 ± cos(2πl1/3), G =
{

1 hcp,

1 + cos(3πl2/4) hd.
(41)

In the case of the (0, 1̄, 1, 0) cleavage plane results (A.1)–(A.4) and (A.28) are relevant
to hcp lattices, but they are to be modified by (A.10) for hd structures. The two possibilities
typical of the case and shown in figure 4(b) are driven by (A.30) and (A.31). As a result, one
can show that

Ehcp,hd
(0,1̄,1,0)N

= q2
√

3

d

⎡

⎢
⎢
⎢
⎢
⎣

∞
∑′

l1,l2=−∞
{l1,l2 even}

Fh1(1 + Fh2)
2G

L5(1 − Fh3)2
−

∞∑

l1,l2=−∞
{l1 even}
{l2 odd}

Fh1(1 − Fh2)
2G

L5(1 − Fh3)2

−
∞∑

l1,l2=−∞
{l1 odd}
{l2 even}

Fh1(1 + Fh2)
2G

L5(1 + Fh3)2
+

∞∑

l1,l2=−∞
{l1,l2 odd}

Fh1(1 − Fh2)
2G

L5(1 + Fh3)2

⎤

⎥
⎥
⎥
⎥
⎦

, (42)

where G is still determined by (41),

L5 = (8l2
1 + 3l2

2

)1/2
, Fh1 = exp

[−π L5/(2
√

6)
]

,

Fh2 = F2
h1, Fh3 = F3

h1.
(43)

In case W, the interaction energy in terms of the aforementioned notations takes the form

Ehcp,hd
(0,1̄,1,0)W

= q2
√

3

d

⎡

⎢
⎢
⎢
⎢
⎣

∞
∑′

l1,l2=−∞
{l1,l2 even}

Fh2(1 + Fh1)
2G

L5(1 − Fh3)2
−

∞∑

l1,l2=−∞
{l1 even}
{l2 odd}

Fh2(1 − Fh1)
2G

L5(1 − Fh3)2

+
∞∑

l1,l2=−∞
{l1 odd}
{l2 even}

Fh2(1 − Fh1)
2G

L5(1 + Fh3)2
−

∞∑

l1,l2=−∞
{l1,l2 odd}

Fh2(1 + Fh1)
2G

L5(1 + Fh3)2

⎤

⎥
⎥
⎥
⎥
⎦

. (44)
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6. Discussion

The general feature common to all the results obtained above is the very high rate of
convergence of the two-dimensional series. This property is typical of the Madelung
treatment [50], that turns out to be much more effective than the widespread Ewald
approach [1, 5], at least in the task at hand. As a result, the numerical values associated
with formulae (17), (22), (23), (25)–(28), (32)–(34), (36), (37), (39), (42) and (44) can be
immediately calculated and are listed in table 1 as values of E1 measured in units of q2/d .
Note that the value E1 is the interaction energy between two semi-infinite hemi-crystals per
point charge on the surface dividing these parts. It implies that the Coulomb contribution of the
modulated potential to the surface energy can be evaluated as [3, 5]

Emodul
surf = −E1/2. (45)

Another principal possibility of representation of the result is associated with the energy
units q2/rs characteristic of the description of metals [45, 51], where 4πr 3

s /3 = v. Keeping in

Table 1. The energy of Coulomb interaction between two semi-infinite hemi-crystals in a jellium
model, with point charges q forming one of four cubic or three hexagonal structures, in dependence
on the orientation of the cleavage plane. The energy per point charge on the interface is represented
either as E1 measured in units of q2/d or as E2, in units of q2/rs, where 4πr3

s /3 = v. The energy
surface density E , in units of q2/v, arises from this by means of formula (48).

Structure Plane E1 (q2/d) E2 (q2/rs) E (q2/v)

Simple (1, 0, 0)a 0.007 899 00 0.004 900 15 −0.003 949 50b

cubic (1, 1, 0) −0.069 763 70 −0.043 277 95 0.024 665 19
(1, 1, 1) −0.107 981 51 −0.066 986 38 0.031 171 58

Body-centred (1, 0, 0) −0.124 009 38 −0.061 058 81 0.031 002 35b

cubic (1, 1, 0) −0.015 925 38 −0.007 841 22 0.005 630 47b

(1, 1, 1) −0.432 472 87 −0.212 937 75 0.062 422 08

Face-centred (1, 0, 0) −0.057 347 47 −0.022 411 18 0.014 336 87b

cubic (1, 1, 0) −0.249 269 50 −0.097 413 60 0.044 065 04b

(1, 1, 1) −0.011 253 05 −0.004 397 65 0.003 248 47b

Cubic (1, 0, 0) −0.254 502 32 −0.078 940 32 0.031 812 79
diamond (1, 1, 0) −0.195 431 18 −0.060 617 91 0.034 547 68

(1, 1, 1) N −0.755 125 99 −0.234 221 39 0.108 993 05
(1, 1, 1)Wa 0.077 360 64 0.023 995 36 −0.011 166 05

Simple (1, 0, 0, 0) −0.200 663 16 −0.118 653 80 0.050 165 79
hexagonalc (0, 1̄, 1, 0) −0.001 097 65 −0.000 649 05 0.000 475 30

(0, 0, 0, 1)a 0.004 258 55 0.002 518 12 −0.002 129 28

Hexagonal (1, 0, 0, 0) −0.179 039 87 −0.098 949 87 0.044 759 97
close packedd (0, 1̄, 1, 0)N −0.506 288 50 −0.279 810 19 0.109 614 68

(0, 1̄, 1, 0)W −0.101 666 85 −0.056 188 16 0.022 011 52
(0, 0, 0, 1) −0.007 828 83 −0.004 326 75 0.003 196 11

Hexagonal (1, 0, 0, 0) −0.158 267 93 −0.069 424 86 0.039 566 98
diamondd (0, 1̄, 1, 0)N −0.458 312 97 −0.201 040 83 0.099 227 67

(0, 1̄, 1, 0)Wa 0.021 031 23 0.009 225 43 −0.004 553 39
(0, 0, 0, 1)N −0.522 787 24 −0.229 322 74 0.106 713 50
(0, 0, 0, 1)Wa 0.060 408 47 0.026 498 42 −0.012 330 83

a The instability is typical of this case.
b This value agrees with the result quoted in [5].
c The ratio |d4|/d = 1 is suggested.
d The ideal ratio |d4|/d = √

8/3 is suggested.
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Table 2. The values of α connecting E and E1 by means of (48) in dependence on the structure and
cleavage plane orientation.

(1, 0, 0) (1, 1, 0) (1, 1, 1) (1, 0, 0, 0) (0, 1̄, 1, 0) (0, 0, 0, 1)

sc −1/2 −1/
√

8 −1/
√

12 sh −1/4 −√
3/4 −1/2

bcc −1/4 −1/
√

8 −1/
√

48 hcp −1/4 −√
3/8 −1/

√
6

fcc −1/4 −1/
√

32 −1/
√

12 hd −1/4 −√
3/8 −1/

√
24

cd −1/8 −1/
√

32 −1/
√

48

mind that v = d3/n, where n = 1, 2, 4 and 8 for the sc, bcc, fcc and cd structures, respectively,
we readily obtain

1

d
=
( 3

4πn

)1/3 1

rs
(46)

for all cubic cases. One can also show that v = d3
√

3/2 for the sh structure at hand, but
v = d3/(m

√
2), with m = 1 and 2 for the ideal hcp and hd structures, respectively. Then we

derive

1

d
= 1

rs
×

⎧

⎪⎪⎨

⎪⎪⎩

(
√

27

8π

)1/3
sh,

( 3

4
√

2 πm

)1/3
hcp, hd.

(47)

The corresponding energy denoted as E2 is given in table 1. Relation (45) is naturally extended
to E2 as well.

The representation of the above results in terms of the two-dimensional density of the
Coulomb part of the surface energy is also expedient. Measured in units of q2/v, where v is
the volume per point charge, the corresponding quantity E is quite suitable for the problem of
self-consistent description of electron states near the surface [5]. On the other hand, the product
Es is equal to Emodul

surf given by (45), where s is the area per point charge in the plane of interest.
Keeping in mind that E1 is measured in units of q2/d , one can show that

E = − v

2sd
E1 ≡ αE1. (48)

For convenience, the values of α in the particular cases under consideration are compiled in
table 2. Making use of these results, the corresponding values of E are readily obtained and are
shown in table 1 as well.

It is worth noting that the most symmetric orientations of the cleavage plane are considered.
As anticipated, both the limiting values bounding the energy of interest for each structure at
hand are thus obtained. Our estimates for the sc, bcc and fcc lattices agree with the known
results [5]. The only exception is associated with the (1, 1, 1) bcc case, where our result turns
out to be almost twice as large. Presumably, a normalization parameter distinct from that in
table 2 was employed in [5].

Table 1 shows that there are cases with positive values of E1. For the sc structure such
a result was obtained earlier [5]. We have obtained that the same situation is typical of the
simple hexagonal and both diamond structures. It implies that the instability associated with
the tendency towards splitting of all emphasized structures in a spontaneous manner must be
expected. As a result, we draw a conclusion that the jellium model, at least in its simplest form,
is not principally applicable to these structures. As far as the diamond structures are concerned,
it is interesting to note that the structural motif common to both of these structures and shown

13
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in figure 3 results in the chief planes of instability. Indeed, the unstable hexagonal (1, 1, 1)W
plane in the cd structure evidently corresponds to the (0, 0, 0, 1)W plane in the hd structure.

As for the other three structures, all the energies of Coulomb interaction discussed are
negative and so describe the attraction. It is evident that a maximum energy in each case
specifies the most favourable plane of cleavage. It appears that it is the (1, 1, 0) plane in the
bcc structure, the hexagonal (1, 1, 1) plane in the fcc structure and the hexagonal (0, 0, 0, 1)

plane in the hcp structure. Note that all these cases correspond to the highest two-dimensional
densities of point charges in the planes at hand, in accord with table 2.

7. Conclusion

The plane-wise summation is employed for calculating the energy of Coulomb interaction
between two semi-infinite parts of a crystal divided by a cleavage plane in a jellium model. The
classical treatment of the uniform potential contribution is extended to alternating interplanar
distances. As a result, we have shown that any layer separated as an individual potential source
can be defined in a symmetric manner and so it does not function as a double layer disturbing
the translational symmetry.

The modulated part of the potential generated by a plane lattice of equal point charges
is derived within the original approach of Madelung, that turns out to be much simpler than
the known treatment of Sholl. Four cubic structures, simple, body centred, face centred and
diamond, are considered along with three hexagonal structures, simple, close packed and
diamond. Three fundamental orientations of the cleavage plane are examined in each case
mentioned above. As a result, 25 basic formulae for the interaction energy of interest have
been obtained. Note that their extension to cases of lower symmetry is straightforward.

The numerical calculation based on these formulae is very effective and is readily
performed. As a result, we have shown that the four structures, simple and diamond in both the
cubic and hexagonal cases, are characterized by positive values of the interaction energy and so
they are expected to be unstable with respect to their spontaneous cleavage. To our mind, this
fact prevents the application of a jellium model to these structures.

As far as the other three stable structures are concerned, we have shown that the
orientation of their energetically favourable cleavage corresponds to planes with the highest
two-dimensional density of point charges.
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Appendix. Parameters of the plane-wise summation scheme in the cases under
consideration

There are typical basis vectors describing plane lattices in terms of lattice constants a1 and a2.
In the case of simple lattice species, we define

b11 = b12 = 0 lattice 1, (A.1)

b21 = 0, b22 = a2/2 lattice 2, (A.2)

b31 = a1/2, b32 = 0 lattice 3, (A.3)

b41 = a2/2, b42 = a2/2 lattice 4, (A.4)
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where (A.1) can also be treated as a reference point common to all the lattices discussed
together. If every plane lattice may be treated as a combination of two simple ones, then the
typical cases of such lattices are of the form

b11 = b12 = 0, b21 = a1/2, b22 = a2/2 lattice 1(4), (A.5)

b31 = 0, b32 = −a2/3, b41 = a1/2, b42 = a2/6 lattice 2(5), (A.6)

b51 = 0, b52 = a2/3, b61 = a1/2, b62 = −a2/6 lattice 3(6), (A.7)

b71 = 0, b72 = a2/2, b81 = a1/2, b82 = 0 lattice 7. (A.8)

Another case of interest appears when lattices (A.1) and (A.4) are modified by the following
sublattices:

b51 = a1/2, b52 = a2/4 lattice 1,

b61 = 0, b62 = −a2/4 lattice 4.
(A.9)

One more case is associated with the modification of the total set (A.1)–(A.4) by the sublattices
of the form

b51 = 0, b52 = −3a2/8 lattice 1,

b61 = 0, b62 = a2/8 lattice 2,

b71 = a1/2, b72 = −3a2/8 lattice 3,

b81 = a1/2, b82 = a2/8 lattice 4.

(A.10)

There is also a special case described by

b11 = b12 = 0, b21 = a1/3, b22 = a2/2,

b31 = 0, b32 = 3a2/8, b41 = a1/3, b42 = −a2/8

}

lattice 1,

b51 = a1/2, b52 = 0, b61 = −a1/6, b62 = a2/2,

b71 = a1/2, b72 = 3a2/8, b81 = −a1/6, b82 = −a2/8

}

lattice 2.
(A.11)

There are four typical cases of lattices distributed evenly and described by

k = 1: p j1 = 0, (A.12)

k = 2: p j1 = 0, p j2 = 1/2, (A.13)

k = 3: p j1 = 0, p j2 = 1/3, p j3 = 2/3, (A.14)

k = 4: p j1 = 0, p j2 = 1/4, p j3 = 1/2, p j4 = 3/4, (A.15)

where jl are the numbers of the lattices mentioned above. When lattice sequences are not
equidistant, those cases of interest will be described in due course.

Now we consider simple (sc), body-centred (bcc), face-centred (fcc) and diamond (cd)
cubic structures with the lattice spacing d . The (1, 0, 0) cleavage plane is then described by

c = d, a1 = a2 =
{

d sc, bcc,

d/
√

2 fcc, cd.
(A.16)

The summation scheme appropriate to the case is determined by

k = 1, j1 = 1 sc,
k = 2, j1 = 1, j2 = 4, bcc, fcc,
k = 4, j1 = 1, j2 = 3, j3 = 4, j4 = 2 cd,

(A.17)

providing that lattices (A.1)–(A.4) are taken into account with their proper numbers there.
The (1, 1, 0) cleavage plane is determined by

a1 = d, a2 = c = d
√

2 sc, bcc,

a2 = d, a1 = c = d/
√

2 fcc, cd,
(A.18)

k = 2, j1 = 1,

j2 = 2 (sc), or j2 = 4 (fcc, cd), or j2 = 7 (bcc),
(A.19)
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where (A.1), (A.2) and (A.4) are utilized in the first two cases associated with j2 in
formula (A.19), providing that those lattices are modified by (A.9) in the cd case. On the
other hand, (A.5) and (A.8) are to be employed for the bcc case.

Likewise, for the (1, 1, 1) cleavage plane we obtain

a1 = d
√

2, a2 = d
√

6, c = d
√

3 sc, (A.20)

a1 = d
√

2, a2 = d
√

6, c = d
√

3/2 bcc, (A.21)

a1 = d/
√

2, a2 = d
√

3/2, c = d
√

3 fcc, cd, (A.22)

k = 3, j1 = 1, j2 = 2, j3 = 3 sc, bcc, fcc, (A.23)

On the other hand, there are two possibilities in the cd case, as shown in figure 3. In both these
events k = 6, but

p1 = 0, p2 = 1/3, p3 = 2/3,

p4 = 1/4, p5 = 7/12, p6 = 11/12 case cd (1, 1, 1)N,
(A.24)

p1 = 3/4, p2 = 1/12, p3 = 5/12,

p4 = 0, p5 = 1/3, p6 = 2/3 case cd (1, 1, 1)W.
(A.25)

Note that in formulae (A.23)–(A.25) the lattices are defined by (A.5)–(A.7) with their proper
numbers as well.

Now we consider hexagonal lattices: simple (sh), close-packed (hcp) and diamond (hd)
ones. The (1, 0, 0, 0) cleavage plane shown in figure 4 is described by

a1 = c = d, a2 = d
√

3 sh,

a1 = d
√

3, a2 = d
√

8/3, c = d hcp, hd,
(A.26)

k = 2, j1 = 1, j2 = 2 (A.27)

where (A.1) and (A.2) correspond to the sh case and (A.11) is relevant to the hd case, but only
the first lines of the parameters for either lattice are essential to the hcp case there.

The (0, 1̄, 1, 0) cleavage plane shown in figure 4 is described by

a1 = a2 = d, c = d
√

3 sh,

a1 = d, a2 = d
√

8/3, c = d
√

3 hcp, hd,
(A.28)

k = 2, j1 = 1, j2 = 2 sh, (A.29)

where (A.1) and (A.2) correspond to the sh case again. The hcp case is described by (A.1)–
(A.4), which are modified by (A.10) in the hd case. Moreover, the N and W possibilities are
typical of both these cases, as depicted in figure 4. In these events k = 4 and, instead of (A.15),
the shift parameters are of the form

p1 = 0, p2 = 1/3, p3 = 1/2, p4 = 5/6 case N, (A.30)

p1 = 2/3, p2 = 0, p3 = 1/6, p4 = 1/2 case W. (A.31)

Finally, the (0, 0, 0, 1) cleavage plane is determined by

a1 = c = d, a2 = d
√

3 sh,

a1 = d, a2 = d
√

3, c = d
√

8/3 hcp, hd,
(A.32)

k = 1, j1 = 1, sh, (A.33)

k = 2, j1 = 1, j2 = 2 hcp, (A.34)

where (A.5) specifies the sh case, but (A.5) and (A.6) are inherent in the hcp and hd cases.
However, figure 4 shows that there are N and W possibilities in the latter case as well. It
implies that k = 4 for hd lattices and

p1 = 0, p2 = 1/2, p4 = 3/8, p5 = 7/8 case N, (A.35)

p1 = 5/8, p2 = 1/8, p4 = 0, p5 = 1/2 case W. (A.36)
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